56 research outputs found

    Signal Stability in Periodically Amplified Fiber Transmission Systems Using Multiple Quantum Well Saturable Absorbers for Regeneration

    Get PDF
    The use of multiple quantum well (MQW) saturable absorbers (SAs) for signal regeneration in periodically amplified fiber transmission systems is explored. A systematic study of signal destabilization resulting from incomplete saturation of MQW SAs used for regeneration, and of means of overcoming such destabilization, is presented. A computer model for MQW SAs, which considers the asymmetric Fabry-Perot (AFP) cavity structure commonly employed to increase the contrast of such devices, is presented. The model is used to simulate nitrogen-implanted MQW SAs with 7000 km when the two components are combined.</p

    Recent Progress of Quantum Dot Lasers Monolithically Integrated on Si Platform

    Get PDF
    With continuously growing global data traffic, silicon (Si)-based photonic integrated circuits have emerged as a promising solution for high-performance Intra-/Inter-chip optical communication. However, a lack of a Si-based light source remains to be solved due to the inefficient light-emitting property of Si. To tackle the absence of a native light source, integrating III-V lasers, which provide superior optical and electrical properties, has been extensively investigated. Remarkably, the use of quantum dots as an active medium in III-V lasers has attracted considerable interest because of various advantages, such as tolerance to crystalline defects, temperature insensitivity, low threshold current density and reduced reflection sensitivity. This paper reviews the recent progress of III-V quantum dot lasers monolithically integrated on the Si platform in terms of the different cavity types and sizes and discusses the future scope and application

    The growth of low-threading-dislocation-density GaAs buffer layers on Si substrates

    Get PDF
    Monolithic integration of III-V optoelectronic devices on Si platform is gaining momentum, since it enables advantages of low cost, less complexity and high yield for mass production. With the aim of achieving advances in monolthic integration, the challenges associated with lattice mismatch between III-V layers and Si substrates must be overcome, as a low density of threading dislocations is a prerequisite for the robustness of the integrated devices. In this paper, we have investigated and compare different tyeps of dislocation filter layers (DFLs) from InGaAs asymmetric step-graded buffer layer (ASG), InGaAs/GaAs strained-layer superlattices, and quaternary alloy InAlGaAs ASG, on the functionlity of reducing threading dislocation density (TDD) for GaAs buffer layers on Si. Compared to other DFLs, the sample with InAlGaAs ASG buffer layer shows the lowest average TDD value and roughness, while the deccrease of TDD in the sample with InAlGaAs ASG buffer layer can be understood in terms of the hardening agent role of aluminium in the InAlGaAs ASG. By further optimising the InAlGaAs ASG through thermal cyclic annealing, we successfully demonstrate a low surface TDD of 6.3±0.1×106 /cm2 for a 2 µm GaAs/InAlGaAs ASG buffer layer grown on Si. These results could provide a thin buffer design for monolthic integration of various III-V devices on Si substrates

    InP integrated optical frequency comb generator using an amplified recirculating loop

    Get PDF
    A novel realisation of photonically integrated optical frequency comb generation is demonstrated on indium phosphide (InP) using a generic foundry platform. The architecture, based on the amplified recirculating loop technique, consists of cascaded electro-optic phase modulators embedded within a short waveguide loop. While an injected continuous wave laser signal is recirculated by the loop, the modulators are driven with a modulation frequency corresponding to the round-trip loop length frequency. This results in many phase coherent, evenly spaced optical comb lines being generated. The choice of InP as an integration platform allows immediate optical amplification of the modulated signal by embedded semiconductor optical amplifiers, enabling loop losses to be compensated and expanding the comb across broad optical bandwidths. This approach reduces the requirement for external, high-power optical amplifiers, improving the compactness and power efficiency of the full system. The system was modelled to identify off-resonance behaviour, outlining limits in matching both the modulation frequency and seed laser frequency to the round-trip loop frequency for optimal comb line generation to be achieved. The experimental device occupied a fraction of the 6 x 2 mm2 InP chip and operated at round-trip loop frequencies of 6.71 GHz to produce 59 comb lines within a 20 dB power envelope. All comb lines exhibited strong phase coherence as characterised by low composite phase noise measurements of -105 dBc/Hz at 100 kHz. A second device is also presented with a shorter loop length operating at ~10 GHz which generated 57 comb lines. Both loop configurations included short waveguide phase shifters providing a degree of tunability of the free spectral range with a tuning range of 150 MHz for small injection currents of less than 2.5 mA.This research work has been supported by the UK Engineering and Physical Sciences Research Council (EPSRC) through the Integrated Photonics and Electronic Systems (IPES) Centre of Doctoral Training and PICSat project (EPSRC Reference: EP/S000976/1)

    Electrically pumped continuous-wave O-band quantum-dot superluminescent diode on silicon

    Get PDF
    High-power, broadband quantum-dot (QD) superluminescent diodes (SLDs) are ideal light sources for optical coherence tomography (OCT) imaging systems but have previously mainly been fabricated on native GaAs- or InP-based substrates. Recently, significant progress has been made to emigrate QD SLDs from native substrates to silicon substrates. Here, we demonstrate electrically pumped continuous-wave InAs QD SLDs monolithically grown on silicon substrates with significantly improved performance thanks to the achievement of a low density of defects in the III-V epilayers. The fabricated narrow-ridge-waveguide device exhibits a maximum 3 dB bandwidth of 103 nm emission spectrum centered at the O-band together with a maximum single facet output power of 3.8 mW at room temperature. The silicon-based SLD has been assessed for application in an OCT system. Under optimized conditions, a predicted axial resolution of ∼5.3µm is achieved with a corresponding output power of 0.66 mW/facet

    High performance waveguide uni-travelling carrier photodiode grown by solid source molecular beam epitaxy

    Full text link
    The first waveguide coupled phosphide-based UTC photodiodes grown by Solid Source Molecular Beam Epitaxy (SSMBE) are reported in this paper. Metal Organic Vapour Phase Epitaxy (MOVPE) and Gas Source MBE (GSMBE) have long been the predominant growth techniques for the production of high quality InGaAsP materials. The use of SSMBE overcomes the major issue associated with the unintentional diffusion of zinc in MOVPE and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of GSMBE. The UTC epitaxial structure contains a 300 nm n-InP collection layer and a 300 nm n++-InGaAsP waveguide layer. UTC-PDs integrated with Coplanar Waveguides (CPW) exhibit 3 dB bandwidth greater than 65 GHz and output RF power of 1.1 dBm at 100 GHz. We also demonstrate accurate prediction of the absolute level of power radiated by our antenna integrated UTCs, between 200 GHz and 260 GHz, using 3d full-wave modelling and taking the UTC-to-antenna impedance match into account. Further, we present the first optical 3d full-wave modelling of waveguide UTCs, which provides a detailed insight into the coupling between a lensed optical fibre and the UTC chip.Comment: 19 pages, 24 figure

    Monolithic quantum-dot distributed feedback laser array on silicon

    Get PDF
    Electrically-pumped lasers directly grown on silicon are key devices interfacing silicon microelectronics and photonics. We report here, for the first time, an electrically-pumped, room-temperature, continuous-wave (CW) and single-mode distributed feedback (DFB) laser array fabricated in InAs/GaAs quantum-dot (QD) gain material epitaxially grown on silicon. CW threshold currents as low as 12 mA and single-mode side mode suppression ratios (SMSRs) as high as 50 dB have been achieved from individual devices in the array. The laser array, compatible with state-of-the-art coarse wavelength division multiplexing (CWDM) systems, has a well-aligned channel spacing of 20 0.2 nm and exhibits a record wavelength coverage range of 100 nm, the full span of the O-band. These results indicate that, for the first time, the performance of lasers epitaxially grown on silicon is elevated to a point approaching real-world CWDM applications, demonstrating the great potential of this technology

    Pilot-tone assisted 16-QAM photonic wireless bridge operating at 250 GHz

    Get PDF
    A photonic wireless bridge operating at a carrier frequency of 250 GHz is proposed and demonstrated. To mitigate the phase noise of the free-running lasers present in such a link, the tone-assisted carrier recovery is used. Compared to the blind phase noise compensation (PNC) algorithm, this technique exhibited penalties of 0.15 dB and 0.46 dB when used with aggregated Lorentzian linewidths of 28 kHz and 359 kHz, respectively, and 20 GBd 16-quadrature amplitude modulation (QAM) signals. The wireless bridge is also demonstrated in a wavelength division multiplexing (WDM) scenario, where 5 optical channels are generated and sent to the Tx remote antenna unit (RAU). In this configuration, the full band from 224 GHz to 294 GHz is used. Finally, a 50 Gbit/s transmission is achieved with the proposed wireless bridge in single channel configuration. The wireless transmission distance is limited to 10 cm due to the low power emitted by the uni-travelling carrier photodiode used in the experiments. However, link budget calculations based on state-of-the-art THz technology show that distances >1000 m can be achieved with this approach.Comment: 13 pages, in Journal of Lightwave Technolog

    Low threading dislocation density and antiphase boundary free GaAs epitaxially grown on on-axis Si (001) substrates

    Get PDF
    The interactions between 1D defect threading dislocations and 2D defect antiphase boundaries and antiphase boundary annihilation in III–V materials on Si heteroepitaxy growth are revealed
    corecore